1. Persamaan Kuadrat
Persamaan kuadrat adalah kalimat matematika yang memuat tanda ( = )dan mempunyai pangkat tertinggi dari variabelnya adalah ( 2 )
Persamaan kuadrat dalam x mempunyai bentuk umum:
ax2 + bx + c = 0 , a ¹ 0 a, b dan c adalah bilangan real.
A. Menyelesaikan Persamaan kuadrat
Persamaan kuadrat dapat diselesaikan dengan beberapa cara, yaitu dengan:
a) memfaktorkan,
b) melengkapkan kuadrat sempurna,
c) menggunakan rumus.
a. Menyelesaikan persamaan kuadrat dengan memfaktorkan
ax2 + bx + c = 0 dapat dinyatakan menjadi a (x – x1) (x – x2) = 0.
Nilai x1 dan x2 disebut akar-akar (penyelesaian) persamaan kuadrat.
Contoh 1 :
Selesaikan x2 – 4 x + 3 = 0
Jawab: x2 – 4 x + 3 = 0
(x – 3) (x – 1) = 0
x – 3 = 0 atau x – 1 = 0
x = 3 atau x = 1
Jadi, penyelesaian dari x2 – 4 x + 3 = 0 adalah 3 dan 1.
Contoh 2 :
Tentukan himpunan penyelesaian dari (x – 2)2 = x – 2.
Jawab: (x – 2)2 = x – 2
x2 – 4 x + 4 = x – 2
x2 – 5 x + 6 = 0
(x – 3) (x – 2) = 0
x – 3 = 0 atau x – 2 = 0
x = 3 atau x = 2
Jadi, himpunan penyelesaiannya adalah {3 , 2}.
Contoh 3 :
Tentukan penyelesaian dari 2 x2 + 7 x + 6 = 0.
Jawab: 2 x2 + 7 x + 6 = 0
2 x2 + 4 x + 3 x + 6 = 0
2 x (x + 2) + 3 (x + 2) = 0
(x + 2) (2 x + 3) = 0
x +2 = 0 atau 2 x + 3 = 0
x = –2 atau x = – 1
Jadi, penyelesaiannya adalah –2 dan –1.
b. Menyelesaikan persamaan kuadrat dengan melengkapkan kuadrat sempurna
Persamaan kuadrat ax2 + bx + c = 0 dapat diselesaikan dengan mengubahnya menjadi (x + p)2 = q.
Contoh 1:
Tentukan himpunan penyelesaian dari x2 – 6 x + 5 = 0.
Jawab: x2 – 6 x + 5 = 0
x2 – 6 x + 9 – 4 = 0
x2 – 6 x + 9 = 4
(x – 3)2 = 4
x – 3 = 2 atau x – 3 = –2
x = 5 atau x = 1
Jadi, himpunan penyelesaiannya adalah{ 1 , 5}.
Contoh 2:
Tentukan penyelesaian dari 2 x2 – 8 x + 7 = 0.
Jawab: 2 x2 – 8 x + 7 = 0
2 x2 – 8 x + 8 – 1 = 0
2 x2 – 8 x + 8 = 1
2 (x2 – 4 x + 4) = 1
2 (x – 2)2 = 1
(x – 2)2 = ½
x – 2 = atau x – 2 = –
x = 2 + Ö2 atau x = 2 –Ö2
Jadi, penyelesaiannya adalah 2 + Ö2 dan 2 – Ö2.
c. Menyelesaikan persamaan kuadrat dengan menggunakan rumus
Rumus penyelesaian persamaan kuadrat a x2 + b x + c = 0 adalah
Contoh :
Tentukan himpunan penyelesaian dari x2 + 7x – 30 = 0.
Jawab: x2 + 7x – 30 = 0
a = 1 , b = 7 , c = – 30
x = 3 atau x = –10
Jadi, himpunan penyelesaiannya adalah {–10 , 3}.
B. Jenis-jenis Akar Persamaan Kuadrat
Kita perhatikan kembali persamaan kuadrat ax2 + bx + c = 0 dengan akar-akarnya , b2 – 4ac disebut diskriminan (D). Sehingga rumus penyelesaian persamaan kuadrat dapat ditulis sebagai .
Dari rumus tersebut tampak bahwa nilai x tergantung dari nilai D.
Apabila:
D > 0 maka ÖD merupakan bilangan real positif, sehingga persamaan kuadrat mempunyai dua akar real berlainan, .
D = 0 maka ÖD = 0, sehingga persamaan kuadrat mempunyai dua akar real sama. .
D < 0 maka ÖD merupakan bilangan tidak real (imajiner), maka persamaan kuadrat tidak mempunyai
akar real atau persamaan kuadrat mempunyai akar tidak real.
Contoh :
Tanpa menyelesaikan persamaan lebih dahulu, tentukan jenis-jenis akar persamaan kuadrat berikut:
x2 + 5 x + 2 = 0
x2 – 10 x + 25 = 0
3 x2 – 4 x + 2 = 0
Jawab :
x2 + 5 x + 2 = 0
a = 1 , b = 5 , c = 2
D = b2 – 4ac = 52 – 4 . 1 . 2 = 25 – 8 = 17
Ternyata D > 0. Jadi, persamaan x2 + 5 x + 2 = 0 mempunyai dua akar real berlainan.
x2 – 10 x + 25 = 0
a = 1 , b = -10 , c = 25
D = b2 – 4ac = (-10)2 – 4 . 1 . 25 = 100 – 100 = 0
Karena D = 0, maka persamaan x2 – 10 x + 25 = 0 mempunyai dua akar real sama.
3 x2 – 4 x + 2 = 0
a = 3 , b = –4 , c = 2
D = b2 – 4ac = (-4)2 – 4 . 3 . 2 = 16 – 24 = – 8
Ternyata bahwa D < 0. Jadi, persamaan 3 x2 – 4 x + 2 = 0 tidak mempunyai akar real.
C. Jumlah dan hasilkali akar-akar persamaan kuadrat
Persamaan kuadrat ax2 + bx + c = 0 mempunyai akar x1 dan x2.
ax2 + bx + c = 0
x2 + x + = 0
Karena x1 dan x2 merupakan akar-akar persamaan kuadrat, maka :
Jadi, , .
Contoh:
Akar-akar x2 – 3x + 4 = 0 adalah x1 dan x2. Dengan tanpa menyelesaikan persamaan tersebut, hitunglah nilai:
x1 + x2 d.
x1.x2 e. x13 + x23
x12 + x22
Jawab: x2 – 3 x + 4 = 0 ® a = 1 , b = –3 , c = 4
a. x1 + x2 = 3
b. x1.x2 = 4
c. x12 + x22 = x12 + x22 + 2 x1.x2 – 2 x1.x2
= (x1 + x2)2 – 2 x1 x2 = 2 (-3)2 – 2 . 4 = 1
e. (x1 + x2)3 = x13 + 3 x12 x2 + 3 x1 x22 + x23
= x13 + 3 x1 x2 (x1 + x2) + x23
x13 + x23 = (x1 + x2)3 – 3 x1 x2 (x1 + x2)
= 33 – 3 . 4 (3)
= 27 – 36 = –9
D. Menyusun Persamaan Kuadrat
Persamaan kuadrat dapat disusun dengan:
v menggunakan perkalian faktor,
v menggunakan jumlah dan hasilkali akar-akar.
a. Menyusun persamaan kuadrat dengan menggunakan perkalian faktor
Pada bahasan terdahulu, persamaan kuadrat x2 + p x + q = 0 dapat dinyatakan sebagai
(x – x1) (x – x2) = 0 sehingga diperoleh akar-akar persamaan itu x1 dan x2. Dengan demikian jika akar-akar
persamaan kuadrat x1 dan x2 maka persamaannya adalah (x – x1) (x – x2) = 0.
Contoh 1:
Tentukan persamaan kuadrat yang akar-akarnya 3 dan -2.
Jawab: (x – x1) (x – x2) = 0
(x – 3) (x – (-2)) = 0
(x – 3) (x + 2) = 0
x2 – 3 x + 2 x – 6 = 0
x2 – x – 6 = 0.
Contoh 2:
Tentukan persamaan kuadrat yang akar-akarnya dan !
Jawab: (x – ) (x – ) = 0
= 0
6 x2 – 2 x – 3 x + 1 = 0
6 x2 – 5 x + 1 = 0
b. Menyusun persamaan kuadrat menggunakan jumlah dan hasil kali akar-akar
Persamaan .
Dengan menggunakan x1 + x2 = – dan x1 x2 = , maka akan diperoleh persamaan:
x2 – (x1 + x2)x + x1x2 = 0.
Contoh:
Tentukan persamaan kuadrat yang akar-akarnya –2 dan –3.
Jawab: x1 + x2 = -2 – 3 = – 5
x1 x2 = 6
Jadi, persamaan kuadratnya x2 – (–5)x + 6 = 0 atau x2 + 5x + 6 = 0.
c. Menyusun persamaan kuadrat yang akar-akarnya berkaitan dengan akar-akar persamaan kuadrat lain
Seringkali kita mendapatkan suatu persamaan kuadrat yang akar-akarnya berhubungan dengan akar-akar persamaan yang lain.
Contoh 1:
Susunlah persamaan kuadrat baru yang akar-akarnya 3 lebih dari akar-akar persamaan x2 – 2x + 3 = 0.
Jawab:
Misal akar-akar persamaan x2 – 2x + 3 = 0 adalah x1 dan x2. ® x1 + x2 = 2 , x1 x2 = 3.
Jika akar-akar persamaan kuadrat baru adalah p dan q, maka p = x1 + 3 dan q = x2 +3
p + q = (x1 + 3) + (x2 + 3) p q = (x1 + 3) (x2 + 3)
= x1 + x2 + 6 = x1 x2 + 3(x1 + x2) + 9
= 2 + 6 = 8 = 3 + 2(2) = 9 = 18
Persamaan kuadrat yang akar-akarnya p dan q adalah x2 – (p + q) + pq = 0.
Persamaan kuadrat baru adalah x2 – 8x + 18 = 0.
Contoh 2:
Susunlah persamaan kuadrat baru yang akarnya 2 kali akar persamaan 2x2 – 3x + 1 = 0.
Jawab:
Misalkan akar-akar persamaan 2x2 – 3x + 1 = 0 adalah x1 dan x2 serta persamaan kuadrat baru adalah a dan b, maka a = 2x1 dan b = 2x2
a + b = 2(x1 + x2) = 2
a b = 2x1 . 2x2 = 4x1 x2 = 4 . = 2
Persamaan kuadrat yang akarnya a dan b adalah:
x2 – (a + b)x + ab = 0.
Persamaan kuadrat baru adalah x2 – 3x + 2 = 0..
2. Pertidaksamaan Kuadrat
Dalam menyelesaikan pertidaksamaan kuadrat dilakukan langkah-langkah berikut :
Jadikan ruas kanan nol.
Uraikan ruas kiri atas faktor linear
Tentukan nilai pembuat nol ruas kiri
Buat garis bilangan dan tempatkan nilai pembuat nol ruas kiri pada garis bilangan
Tentukan tanda-tanda ruas kiri pada garis bilangan.
Tentukan penyelesaian pertidaksamaan.
Contoh 1 :
Selesaikan x2 – 2x – 8 ³ 0 !
Jawab :
x2 – 2 x – 8 ³ 0
(x – 4 ) (x + 2) ³ 0
Garis bilangan :
+ + + + + | – - – - – - | + + + +
–2 4
Nilai x yang memenuhi :
x £ –2 atau x ³ 4
Contoh 2 :
Selesaikan 3 x2 + 2 x < 3 – 6 x !
Jawab :
3 x2 + 2 x < 3 – 6 x
3 x2 + 2 x + 6 x – 3 < 0
3 x2 + 8 x – 3 < 0
(3 x – 1) (x + 3) < 0
Nilai pembuat nol : 3x – 1 = 0 dan x + 3 = 0
3x = 1 x = –3
x =
Garis bilangan
+ + + + | – - – - – - – - – | + + + + +
o o
–3
Karena permintaan adalah negatif, maka nilai x yang memenuhi adalah –3 < x <
Demikian yang dapat saya paparkan mengenai materi ini, dan saya berharap semoga materi ini bermanfaat bagi anda
Persamaan kuadrat adalah kalimat matematika yang memuat tanda ( = )dan mempunyai pangkat tertinggi dari variabelnya adalah ( 2 )
Persamaan kuadrat dalam x mempunyai bentuk umum:
ax2 + bx + c = 0 , a ¹ 0 a, b dan c adalah bilangan real.
A. Menyelesaikan Persamaan kuadrat
Persamaan kuadrat dapat diselesaikan dengan beberapa cara, yaitu dengan:
a) memfaktorkan,
b) melengkapkan kuadrat sempurna,
c) menggunakan rumus.
a. Menyelesaikan persamaan kuadrat dengan memfaktorkan
ax2 + bx + c = 0 dapat dinyatakan menjadi a (x – x1) (x – x2) = 0.
Nilai x1 dan x2 disebut akar-akar (penyelesaian) persamaan kuadrat.
Contoh 1 :
Selesaikan x2 – 4 x + 3 = 0
Jawab: x2 – 4 x + 3 = 0
(x – 3) (x – 1) = 0
x – 3 = 0 atau x – 1 = 0
x = 3 atau x = 1
Jadi, penyelesaian dari x2 – 4 x + 3 = 0 adalah 3 dan 1.
Contoh 2 :
Tentukan himpunan penyelesaian dari (x – 2)2 = x – 2.
Jawab: (x – 2)2 = x – 2
x2 – 4 x + 4 = x – 2
x2 – 5 x + 6 = 0
(x – 3) (x – 2) = 0
x – 3 = 0 atau x – 2 = 0
x = 3 atau x = 2
Jadi, himpunan penyelesaiannya adalah {3 , 2}.
Contoh 3 :
Tentukan penyelesaian dari 2 x2 + 7 x + 6 = 0.
Jawab: 2 x2 + 7 x + 6 = 0
2 x2 + 4 x + 3 x + 6 = 0
2 x (x + 2) + 3 (x + 2) = 0
(x + 2) (2 x + 3) = 0
x +2 = 0 atau 2 x + 3 = 0
x = –2 atau x = – 1
Jadi, penyelesaiannya adalah –2 dan –1.
b. Menyelesaikan persamaan kuadrat dengan melengkapkan kuadrat sempurna
Persamaan kuadrat ax2 + bx + c = 0 dapat diselesaikan dengan mengubahnya menjadi (x + p)2 = q.
Contoh 1:
Tentukan himpunan penyelesaian dari x2 – 6 x + 5 = 0.
Jawab: x2 – 6 x + 5 = 0
x2 – 6 x + 9 – 4 = 0
x2 – 6 x + 9 = 4
(x – 3)2 = 4
x – 3 = 2 atau x – 3 = –2
x = 5 atau x = 1
Jadi, himpunan penyelesaiannya adalah{ 1 , 5}.
Contoh 2:
Tentukan penyelesaian dari 2 x2 – 8 x + 7 = 0.
Jawab: 2 x2 – 8 x + 7 = 0
2 x2 – 8 x + 8 – 1 = 0
2 x2 – 8 x + 8 = 1
2 (x2 – 4 x + 4) = 1
2 (x – 2)2 = 1
(x – 2)2 = ½
x – 2 = atau x – 2 = –
x = 2 + Ö2 atau x = 2 –Ö2
Jadi, penyelesaiannya adalah 2 + Ö2 dan 2 – Ö2.
c. Menyelesaikan persamaan kuadrat dengan menggunakan rumus
Rumus penyelesaian persamaan kuadrat a x2 + b x + c = 0 adalah
Contoh :
Tentukan himpunan penyelesaian dari x2 + 7x – 30 = 0.
Jawab: x2 + 7x – 30 = 0
a = 1 , b = 7 , c = – 30
x = 3 atau x = –10
Jadi, himpunan penyelesaiannya adalah {–10 , 3}.
B. Jenis-jenis Akar Persamaan Kuadrat
Kita perhatikan kembali persamaan kuadrat ax2 + bx + c = 0 dengan akar-akarnya , b2 – 4ac disebut diskriminan (D). Sehingga rumus penyelesaian persamaan kuadrat dapat ditulis sebagai .
Dari rumus tersebut tampak bahwa nilai x tergantung dari nilai D.
Apabila:
D > 0 maka ÖD merupakan bilangan real positif, sehingga persamaan kuadrat mempunyai dua akar real berlainan, .
D = 0 maka ÖD = 0, sehingga persamaan kuadrat mempunyai dua akar real sama. .
D < 0 maka ÖD merupakan bilangan tidak real (imajiner), maka persamaan kuadrat tidak mempunyai
akar real atau persamaan kuadrat mempunyai akar tidak real.
Contoh :
Tanpa menyelesaikan persamaan lebih dahulu, tentukan jenis-jenis akar persamaan kuadrat berikut:
x2 + 5 x + 2 = 0
x2 – 10 x + 25 = 0
3 x2 – 4 x + 2 = 0
Jawab :
x2 + 5 x + 2 = 0
a = 1 , b = 5 , c = 2
D = b2 – 4ac = 52 – 4 . 1 . 2 = 25 – 8 = 17
Ternyata D > 0. Jadi, persamaan x2 + 5 x + 2 = 0 mempunyai dua akar real berlainan.
x2 – 10 x + 25 = 0
a = 1 , b = -10 , c = 25
D = b2 – 4ac = (-10)2 – 4 . 1 . 25 = 100 – 100 = 0
Karena D = 0, maka persamaan x2 – 10 x + 25 = 0 mempunyai dua akar real sama.
3 x2 – 4 x + 2 = 0
a = 3 , b = –4 , c = 2
D = b2 – 4ac = (-4)2 – 4 . 3 . 2 = 16 – 24 = – 8
Ternyata bahwa D < 0. Jadi, persamaan 3 x2 – 4 x + 2 = 0 tidak mempunyai akar real.
C. Jumlah dan hasilkali akar-akar persamaan kuadrat
Persamaan kuadrat ax2 + bx + c = 0 mempunyai akar x1 dan x2.
ax2 + bx + c = 0
x2 + x + = 0
Karena x1 dan x2 merupakan akar-akar persamaan kuadrat, maka :
Jadi, , .
Contoh:
Akar-akar x2 – 3x + 4 = 0 adalah x1 dan x2. Dengan tanpa menyelesaikan persamaan tersebut, hitunglah nilai:
x1 + x2 d.
x1.x2 e. x13 + x23
x12 + x22
Jawab: x2 – 3 x + 4 = 0 ® a = 1 , b = –3 , c = 4
a. x1 + x2 = 3
b. x1.x2 = 4
c. x12 + x22 = x12 + x22 + 2 x1.x2 – 2 x1.x2
= (x1 + x2)2 – 2 x1 x2 = 2 (-3)2 – 2 . 4 = 1
e. (x1 + x2)3 = x13 + 3 x12 x2 + 3 x1 x22 + x23
= x13 + 3 x1 x2 (x1 + x2) + x23
x13 + x23 = (x1 + x2)3 – 3 x1 x2 (x1 + x2)
= 33 – 3 . 4 (3)
= 27 – 36 = –9
D. Menyusun Persamaan Kuadrat
Persamaan kuadrat dapat disusun dengan:
v menggunakan perkalian faktor,
v menggunakan jumlah dan hasilkali akar-akar.
a. Menyusun persamaan kuadrat dengan menggunakan perkalian faktor
Pada bahasan terdahulu, persamaan kuadrat x2 + p x + q = 0 dapat dinyatakan sebagai
(x – x1) (x – x2) = 0 sehingga diperoleh akar-akar persamaan itu x1 dan x2. Dengan demikian jika akar-akar
persamaan kuadrat x1 dan x2 maka persamaannya adalah (x – x1) (x – x2) = 0.
Contoh 1:
Tentukan persamaan kuadrat yang akar-akarnya 3 dan -2.
Jawab: (x – x1) (x – x2) = 0
(x – 3) (x – (-2)) = 0
(x – 3) (x + 2) = 0
x2 – 3 x + 2 x – 6 = 0
x2 – x – 6 = 0.
Contoh 2:
Tentukan persamaan kuadrat yang akar-akarnya dan !
Jawab: (x – ) (x – ) = 0
= 0
6 x2 – 2 x – 3 x + 1 = 0
6 x2 – 5 x + 1 = 0
b. Menyusun persamaan kuadrat menggunakan jumlah dan hasil kali akar-akar
Persamaan .
Dengan menggunakan x1 + x2 = – dan x1 x2 = , maka akan diperoleh persamaan:
x2 – (x1 + x2)x + x1x2 = 0.
Contoh:
Tentukan persamaan kuadrat yang akar-akarnya –2 dan –3.
Jawab: x1 + x2 = -2 – 3 = – 5
x1 x2 = 6
Jadi, persamaan kuadratnya x2 – (–5)x + 6 = 0 atau x2 + 5x + 6 = 0.
c. Menyusun persamaan kuadrat yang akar-akarnya berkaitan dengan akar-akar persamaan kuadrat lain
Seringkali kita mendapatkan suatu persamaan kuadrat yang akar-akarnya berhubungan dengan akar-akar persamaan yang lain.
Contoh 1:
Susunlah persamaan kuadrat baru yang akar-akarnya 3 lebih dari akar-akar persamaan x2 – 2x + 3 = 0.
Jawab:
Misal akar-akar persamaan x2 – 2x + 3 = 0 adalah x1 dan x2. ® x1 + x2 = 2 , x1 x2 = 3.
Jika akar-akar persamaan kuadrat baru adalah p dan q, maka p = x1 + 3 dan q = x2 +3
p + q = (x1 + 3) + (x2 + 3) p q = (x1 + 3) (x2 + 3)
= x1 + x2 + 6 = x1 x2 + 3(x1 + x2) + 9
= 2 + 6 = 8 = 3 + 2(2) = 9 = 18
Persamaan kuadrat yang akar-akarnya p dan q adalah x2 – (p + q) + pq = 0.
Persamaan kuadrat baru adalah x2 – 8x + 18 = 0.
Contoh 2:
Susunlah persamaan kuadrat baru yang akarnya 2 kali akar persamaan 2x2 – 3x + 1 = 0.
Jawab:
Misalkan akar-akar persamaan 2x2 – 3x + 1 = 0 adalah x1 dan x2 serta persamaan kuadrat baru adalah a dan b, maka a = 2x1 dan b = 2x2
a + b = 2(x1 + x2) = 2
a b = 2x1 . 2x2 = 4x1 x2 = 4 . = 2
Persamaan kuadrat yang akarnya a dan b adalah:
x2 – (a + b)x + ab = 0.
Persamaan kuadrat baru adalah x2 – 3x + 2 = 0..
2. Pertidaksamaan Kuadrat
Dalam menyelesaikan pertidaksamaan kuadrat dilakukan langkah-langkah berikut :
Jadikan ruas kanan nol.
Uraikan ruas kiri atas faktor linear
Tentukan nilai pembuat nol ruas kiri
Buat garis bilangan dan tempatkan nilai pembuat nol ruas kiri pada garis bilangan
Tentukan tanda-tanda ruas kiri pada garis bilangan.
Tentukan penyelesaian pertidaksamaan.
Contoh 1 :
Selesaikan x2 – 2x – 8 ³ 0 !
Jawab :
x2 – 2 x – 8 ³ 0
(x – 4 ) (x + 2) ³ 0
Garis bilangan :
+ + + + + | – - – - – - | + + + +
–2 4
Nilai x yang memenuhi :
x £ –2 atau x ³ 4
Contoh 2 :
Selesaikan 3 x2 + 2 x < 3 – 6 x !
Jawab :
3 x2 + 2 x < 3 – 6 x
3 x2 + 2 x + 6 x – 3 < 0
3 x2 + 8 x – 3 < 0
(3 x – 1) (x + 3) < 0
Nilai pembuat nol : 3x – 1 = 0 dan x + 3 = 0
3x = 1 x = –3
x =
Garis bilangan
+ + + + | – - – - – - – - – | + + + + +
o o
–3
Karena permintaan adalah negatif, maka nilai x yang memenuhi adalah –3 < x <
Demikian yang dapat saya paparkan mengenai materi ini, dan saya berharap semoga materi ini bermanfaat bagi anda
0 comments:
Post a Comment